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The traditional PIC method in plasma physics

Method to simulate collective phenomena in plasmas:

• Plasma is described by a small number of super-particles (SP),
each SP represents many ions or electrons,
each SP describes a piece of the distribution function f.

• The motion of the SPs is straightforwardly described by the
Newton-Maxwell equations.

• The self-consistent fields are calculated by projecting on a
spatial grid charge and current associated with each SP.



The PIC method in general..

The PIC method is a numerical technique used to solve a certain
class of partial differential equations:

• individual particles (or fluid elements) in a Lagrangian frame
are tracked in continuous phase space

• moments of the distribution function are computed
simultaneously on Eulerian (stationary) mesh points.

Solid and fluid mechanics, cosmology,...
Plasma physics:
laser-plasma interactions, electron acceleration and ion heating in
the auroral ionosphere, magnetic reconnection...Gyrokinetics



Outline

• Construct a set of gyrokinetic (GK) equations, suited for
simulations:

1) Must preserve symmetries: conserved quantities (energy).
2) Must contain (only) relevant physics: approximation are needed,
but must not break self-consistency.

General procedure: GK field theory.
Example: Electrostatic, linearised polarisation GK Vlasov-Maxwell.

• PIC discretization for particle and field eqs. (finite elements).

• Properties of the discretised equations (conservation, errors,
convergences,..).

• Examples, simulations of experimental plasmas.



Self-consistent gyrokinetic equation from GK Lagrangian

GOAL: construct a simple self-consistent, energy conserving set of
gyrokinetic equations, suited for PIC discretisation:
Electrostatic, linearised polarisation GK Vlasov-Maxwell system.

• Not only an academic problem: state of the art up ∼ 5 years
ago, still useful for many physics problems.

• Traditionally, iterative method [Friemann & Chen 1979...] or
Hamiltonian representation to get Vlasov equation from particle
Lagrangian; a back transformation (Lie) was used to obtain the
field equations [Hahm 1988...].
1) Establish a GK Lagrangian.

The symmetry and conservation properties are preserved.



Self-consistent gyrokinetic equation from GK Lagrangian

GOAL: construct a simple self-consistent, energy conserving set of
gyrokinetic equations, suited for PIC discretisation:
Electrostatic, linearised polarisation GK Vlasov-Maxwell system

TOOL: gyrokinetic field theory.

1) Establish a proper GK Lagrangian for particles and fields.
2) Approximate the Lagrangian.
3) Classical field theory: derive equations for particles and fields
from variational principles.
4) Discretise the resulting equations using PIC.

The symmetry and conservation properties are preserved.



Self-consistent gyrokinetic equation from GK Lagrangian

GOAL: construct a simple self-consistent, energy conserving set of
gyrokinetic equations, suited for PIC discretisation.
Electrostatic, linearised polarisation GK Vlasov-Maxwell system

TOOL: gyrokinetic field theory.

1) Establish a proper GK Lagrangian for particles and fields.

2) Approximate the Lagrangian.

3) Classical field theory: derive equations for particles and fields
from variational principles.
Discretise the resulting equations.

The symmetry and conservation properties are preserved.



Particle Lagrangian with time dependence in Hamiltonian
STARTING POINT: Lie transformed low-frequency particle
Lagrangian in gyrocenter coordinates

Lp ≡
(e
c
A + p‖b

)
· Ṙ +

mc

e
µθ̇ − H

R, gyrocenter positions; µ ≡ mv2
⊥

2B , magnetic moment;
p‖ ≡ mU − e

c J0A‖, canonical parallel momentum; θ, gyroangle;
B = ∇× A, background (static) magnetic field; J0 gyroaverage
operator, U parallel velocity.

Lie transform method is rather general: choices can be made to
arrange Lp so that the symplectic part depends only on the
background, while all the time varying fields are contained in the
Hamiltonian H.

[Hahm 1988, Brizard 2007, Miyato 2009,...].



GK total Lagrangian contains all the needed physics

Following [Sugama 2000], Lagrangian for particles AND fields is:

L =
∑
sp

∫
dW0dV f (Z0, t0)Lp(Z(Z0, t0; t), Ż(Z0, t0; t), t)

+

∫
dV

E 2 − B2
⊥

8π

Z ≡ (R, p‖, µ, θ); dW ≡ 2π
m2B

∗
‖dp‖dµ; B2

⊥ = |∇⊥A‖|2 The first

term is the Lagrangian for charged particles.

•f (Z0) is the distribution function for the species sp at an arbitrary
initial time t0.
•Lp is the Lie transformed particle Lagrangian written in terms of
the gyro-center coordinates, acts as a Lagrangian density.
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∑
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dW0dV f (Z0, t0)Lp(Z(Z0, t0; t), Ż(Z0, t0; t), t)

+
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⊥
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The first term is the Lagrangian for charged particles.

•f (Z0) is the distribution function for the species sp at an arbitrary
initial time t0.

•Lp is the Lie transformed particle Lagrangian written in terms of
the gyro-center coordinates, Lagrangian density.



GK total Lagrangian contains all the needed physics

Following [Sugama 2000], the GK total Lagrangian is:

L =
∑
sp

∫
dW0dV f (Z0, t0)Lp(Z(Z0, t0; t), Ż(Z0, t0; t), t)

+

∫
dV

E 2 − B2
⊥

8π

The second term is the Lagrangian for the electromagnetic fields.

Note: the particle Hamiltonian is not an invariant in GK theory.
The conserved quantity is the total energy of the system.



Total Lagrangian contains the Vlasov equation

• Particle number conservation condition:

dW0dVf (Z0, t0) = dWdVf (Z, t)

• The time dependence in the distribution function f (Z, t) is:

2π

m2
B∗‖ f (Z, t) =

∫
dW0dVf (Z0, t0)δ(Z− Z0)

• Taking the time derivative of this equation, with some algebra,
the GK Vlasov equation can be obtained:

∂

∂t
f (Z, t) +

dZ

dt
· ∂
∂Z

f (Z, t) = 0

Full derivation, for example: [Miyato 2009].



Total Lagrangian: summary

L =
∑
sp

∫
dWdV f (Z, t)Lp +

∫
dV

E 2 − B2
⊥

8π

Lp =
(e
c
A + p‖b

)
· Ṙ +

mc

e
µθ̇ − H

H = H(Φ,A‖)

• Contains the Vlasov equation.
• Only one assumption on the Hamiltonian: it must contain the
electrostatic potentials Φ and the parallel component of the
fluctuation magnetic potential A‖.



Total Lagrangian with simplest Hamiltonian [Hahm 1988]

L =
∑
sp

∫
dWdV f (Z, t)Lp +

∫
dV

E 2 − B2
⊥

8π

Lp =
(e
c
A + p‖b

)
· Ṙ +

mc

e
µθ̇ − H

H = m
U2

2
+ µB + eJ0Φ− mc2

2B2
|∇⊥Φ|2

• H is second order in both fields (p‖ ≡ mU − e
c J0A‖)...

H = H0 + H1 + H2

H0 ≡
p2‖
2m

+ µB

H1 ≡ e(J0Φ−
p‖
mc

J0A‖) ≡ eJ0Ψ

H2 ≡ e2

2mc2
(J0A‖)

2 − mc2

2B2
|∇⊥Φ|2
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Total Lagrangian with simplest Hamiltonian [Hahm 1988]

L =
∑
sp

∫
dWdV f (Z, t)Lp +

∫
dV

E 2 − B2
⊥

8π

Lp =
(e
c
A + p‖b

)
· Ṙ +

mc

e
µθ̇ − H

H =
p2‖
2m

+ µB + e(J0Φ−
p‖
mc

J0A‖) +
e2

2mc2
(J0A‖)

2 − mc2

2B2
|∇⊥Φ|2

• This is all we need from GK... from now on, field theory.

• In the context of field theory, this Lagrangian can be further
approximated, without loosing self-consistency and energetic
consistency of the final equations.

• Simmetry property of the Lagrangian will be automatically
transferred to the equations.



Quasi-neutrality approximation

L =
∑
sp

∫
dWdV f (Z, t)Lp +

∫
dV

(
E 2

8π
−

B2
⊥

8π

)
Lp =

(e
c
A + p‖b

)
· Ṙ +

mc

e
µθ̇ − H

H =
p2‖
2m

+ µB + e(J0Φ−
p‖
mc

J0A‖) +
e2

2mc2
(J0A‖)

2 − mc2

2B2
|∇⊥Φ|2

∫
dV

E 2

8π
+

∫
dWdV f

m

2

c2

B2
|∇⊥Φ|2 =

1

8π

∫
dV

(
1 +

ρ2S
λ2d

)
|∇⊥Φ|2

λ2d ≡
kBTe

4πne2
Debye length; ρ2S ≡

kBTemc2

e2B2 ion sound Larmor radius.

In fusion plasmas :
ρ2S
λ2d

=
4πnmc2

B2
=

c2

v2a
� 1

where va is the Alfvén velocity, c speed of light.
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Linearised polarisation approximation

L =
∑
sp

∫
dVdW

((e
c
A + p‖b

)
· Ṙ +

mc

e
µθ̇ − H

)
f−
∫

dV
B2
⊥

8π

• Start from H = H0 + H1 + H2

• In the Lagrangian H0 + H1 only multiplies f : (H0 + H1)f
• For H2, f is replaced by an equilibrium distribution function fM
independent of time: H2fM

L =
∑
sp

∫
dVdW

((e
c
A + p‖b

)
· Ṙ +

mc

e
µθ̇ − H0 − H1

)
f

+
∑
sp

∫
dVdWH2fM −

∫
dV

B2
⊥

8π

This approximation will lead to linearised field equations.



Electrostatic model

• Although electromagnetic effects are important to correctly
describe experimental plasmas, in the following we will neglect
magnetic perturbations, A‖ = 0 and p‖ = mU.

L =
∑
sp

∫
dVdW

((e
c
A + p‖b

)
· Ṙ +

mc

e
µθ̇ − H0 − H1

)
f

+
∑
sp

∫
dVdW

mc2

2B2
|∇⊥Φ|2

• From now on, any additional approximation or odering will break
the symmetry and conservation properties of the underlying
dynamical system.



Euler-Lagrange equations

• From the GK Lagrangian using variational principles for the
action functional I , functional derivatives [Morrison 2005]:

δI =

∫ t2

t1
δLdt

• Euler-Lagrange equations, functional derivatives with respect to
the particle phase space positions Z = (R, p‖, µ):

δI

δZ
= 0⇒ δL

δZ
= 0

as t1 and t2 are arbitrary.



Euler-Lagrange equations, electrostatic H

• With the simple Lagrangian:

Ṙ =
∂(H0 + H1)

∂p‖

B∗

B∗‖
− c

eBB∗‖
F · ∇(H0 + H1)

ṗ‖ = −B∗

B∗‖
· ∇(H0 + H1)

where a drift tensor notation for the background magnetic field has
been used, in which ε it the rank-three Levi-Civita pseudotensor:

F = ∇A−(∇A)T , F = ε·B, ∇×b = −∇·F
B
, b×C = −F

B
·C ∀C

A∗ = A + p‖
c

e
b, B∗ = ∇× A∗



Euler-Lagrange equations, no tensors

• Same equations in a more familiar form:

Ṙ =
p‖
m
b−

(p‖
m

)2 mc

eB∗‖
b× ∇p

B2

+

(
µB

m
+
(p‖
m

)2) mc

eB∗‖
b× ∇B

B
+

c

eB∗‖
eb×∇J0Φ,

ṗ‖ = µB∇ · b +
µc

eB∗‖
p‖b×

∇p
B2
· ∇B

+e∇J0Φ ·

(
−b +

c

eB∗‖
p‖

(
b× ∇p

B2
− b×∇B

B

))
∇p ≡ 1

4π
(∇× B× B)



Tensor formalism emphasizes symmetries
• The previous equation can be cast in the form of an
antisymmetric generalised bracket [Scott 2010]:

B∗‖
∂f

∂t
+∇H · ∂G

∂p‖
· ∇f + (−∇ · G) ·

(
∂H

∂p‖
∇f − ∂f

∂p‖
∇H

)
= 0

having defined G ≡ ε · A∗.
• This structure has the form of a triple bracket:

[H,G ab, f ]azb =
∂G ab

∂p‖
[H, f ]ab + (∇aG

ab)[H, f ]bz + (∇bG
ab)[H, f ]za

ab are pairs of spatial indices, z denotes the p‖ coordinate.
• The two-bracket form is

[H, f ]ab = H,af,b − H,bf,a

g,a denotes differentiation with respect to variable with index a.



Vlasov equation has a symmetric form

• A∗ has no p‖ component:
additional fictitious 3-brackets can be added, leading to a
remarkably symmetric expression for the gyrokinetic Vlasov
equation.

∂f

∂t
+

1
√
gB∗‖

εabczH,af,bA
∗
c,z = 0

where Einstein summation convention is assumed.
εabcz is the antisymmetric rank-four Levi-Civita pseudotensor.

• The antisymmetric bracket form of the GK Vlasov equations
allows for straightforward conservation of several quantities,
including particle number and energy.



Field equation: Polarisation equation

• Functional derivative of L with respect to Φ:

δL

δΦ
= 0→ δfH

δΦ
= 0

which implies, with some algebra,

∑
sp

∫
dV δΦ

∫
dW

(
eJ0f +

1

B∗‖
∇(B∗‖

mc2

B2
fM∇⊥Φ)

)
= 0

the J0 operator must be Hermitian.
• The arbitrariness of δΦ implies:

∑
sp

∫
dW

(
eJ0f +

1

B∗‖
∇(

mc2

B2
B∗‖ fM∇⊥Φ)

)
= 0



Field equation: Polarisation equation

• dp‖dµ commutes with ∇:

∑
sp

(∫
dWeJ0f +∇n0mc2

B2
∇⊥

mc2

B2
Φ

)
= 0

n0 is the density associated with the equilibrium Maxwellian fM .

• The polarization equation clarifies the approximations made:

1) It is a linear equation.

2) It has the form of
∑

sp ensp = 0, where ensp is the particle
density, i.e. a quasi-neutrality condition.



Global energy conservation equation

∂f

∂t
+

1
√
gB∗‖

εabczH,af,bA
∗
c,z = 0

• Multiply by H, use linearity of the derivatives in the brackets and
symmetry:

∂fH

∂t
+

1
√
gB∗‖

εabczH,a(fH),bA
∗
c,z = f

∂H

∂t

• Integrate over phase-space, sum over species:

∑
sp

∫
dWdV

∂fH

∂t
=
∑
sp

∫
dWdVf

∂H

∂t

• functional derivatives:∑
sp

∫
dWdV

∂fH

∂t
=

∫
dV
∑
sp

δfH

δΦ

∂Φ

∂t
= 0



Global energy conservation equation

• Finally:

∂

∂t
E ≡ ∂

∂t

∑
sp

∫
dVdWfH = 0

• The Hamiltonian is the global energy.

• Not true for electromagnetic (EM) Lagrangian:

∂

∂t
E ≡ ∂

∂t

(∑
sp

∫
dVdWfH +

∫
dV

B2
⊥

8π

)
= 0

Note: the EM total energy is conserved only across-species.



Global energy conservation, electrostatic case

∂

∂t
E =

∂

∂t

(∑
sp

∫
dVdWfH

)
= 0

∂

∂t

(∑
sp

∫
dVdWf (m

U2

2
+ µB + eJ0Φ)

)
≡ Ėk + ĖF = 0

• It can be easily verified, using the Euler-Lagrange equations, that

Ėk = −
∑
sp

∫
dVdWfe∇(J0Φ) · Ṙ0

• Power balance equation:

1

2EF
ĖF = − 1

2EF

∑
sp

∫
dVdWfe∇(J0Φ) · Ṙ0



Power balance equation in CYCLONE, nonlinear PIC

• CYCLONE base case: DIII-D (circular) equilibrium.



Power balance is a powerful tool

• The power balance equation not only gives an indication of the
quality of the simulation, but also provides, in linear simulations, a
measure of the instantaneous growth rate:

EF (R, t) = ĒF (R) exp(2γt)

γ =
1

2EF

∑
sp

∫
dVdWfe∇(J0Φ) · Ṙ0

Ṙ0 =
p‖
m
b−

(p‖
m

)2 mc

eB∗‖
b× ∇p

B2
+

(
µB

m
+
(p‖
m

)2) mc

eB∗‖
b× ∇B

B

γ =
1

2EF

∑
sp

∫
dVdWfe∇(J0Φ) · (v‖ + v∇p + v∇B)



Instantenous growth rate for ITG modes, linear

γ =
1

2EF

∑
sp

∫
dVdWfe∇(J0Φ) · (v‖ + v∇p + v∇B)



Instantenous growth rate for ITG modes, nonlinear



Summary: electrostatic, linear polarization GK equations

∂f

∂t
+ Ṙ · ∇f + ṗ‖

∂f

∂p‖
= 0

Ṙ =
p‖
m

B∗

B∗‖
− c

eBB∗‖
F · [µ∇B + e∇J0Φ]

ṗ‖ = −B∗

B∗‖
· [µ∇B + e∇J0Φ]

∑
sp

(∫
dWeJ0f +∇ ·

(
n0mc2

B2
∇⊥Φ

))
= 0

• Energetic consistency: the same Hamiltonian must be used to
construct the polarization equation and the gyrokinetic Vlasov
equations.
• This also implies that the approximations made cannot be
relaxed once the equations have been derived.



Energetic consistency can be easily broken

∂f

∂t
+ Ṙ · ∇f + ṗ‖

∂f

∂p‖
= 0

Ṙ =
p‖
m

B∗

B∗‖
− c

eBB∗‖
F · [µ∇B + e∇J0Φ]

ṗ‖ = −B∗

B∗‖
· [µ∇B + e∇J0Φ]

∑
sp

(∫
dWeJ0f +∇ ·

(
n(t)mc2

B2
∇⊥Φ

))
= 0

Energetic consistency is broken:
• nonlinear polarization implies using (H0 + H1 + H2)f in the
Lagrangian for field equations;
→ second order terms must be included in the Euler-Lagrange
equations.



Energetic consistency can be easily broken

∂f

∂t
+ Ṙ · ∇f + ṗ‖

∂f

∂p‖
= 0

Ṙ =
p‖
m

B∗

B∗‖
− c

eBB∗‖
F · [µ∇B + e∇J0Φ] + O(Φ2)

ṗ‖ = −B∗

B∗‖
· [µ∇B + e∇J0Φ] + O(Φ2)

∑
sp

(∫
dWeJ0f +∇ ·

(
n(t)mc2

B2
∇⊥Φ

))
= 0

Energetic consistency is restored:
• nonlinear polarization implies using (H0 + H1 + H2)f in the
Lagrangian for field equations;
→ second order terms must be included in the Euler-Lagrange
equations.



PIC discretization

• f is approximated by a sum of N markers, each defined by a
position in phase-space (R(t), p‖(t), µ) and a weight w .

f ' fN(R(t), p‖(t), µ) =
N∑

k=1

wkδ(R−Rk(t))δ(p‖−p‖k(t))δ(µ−µk)

• The weights wk are time independent (replace f in Vlasov eq...).

• The weights are distributed accordingly to a certain probability
density function g (importance sampling).



Euler-Lagrange equations, time evolution

• The time evolution is done by advancing the markers along the
characteristics of the Vlasov equation:

Ṙk =

(
p‖k
m

B∗

B∗‖
− c

eBB∗‖
F · [µk∇B + e∇J0Φ]

)
k

˙p‖k =

(
−B∗

B∗‖
· [µk∇B + e∇J0Φ]

)
k

given an initial condition Rk(0) = Rk
0, µk ,p‖k(0) = p0‖k .

• J0Φ at the marker position is needed.

• Φ is computed by solving the polarisation equation on a grid of
physical space, after having constructed the charge density
ρN =

∫
dWeJ0f on the grid.



The gyroaverage operator J0 has the form of Bessel-J0

J0Φ =
1

2π

∫ 2π

0
Φ(R + ~ρi ) dθ =

=
1

2π

∫ 2π

0

(∫
1

(2π)3
Φ̂(k) e ik·(R+~ρi ) dk

)
dθ =

=

∫
1

(2π)3
Φ̂(k)

(
1

2π

∫ 2π

0
e ik⊥ρi cos(θ) dθ

)
e ik·R dk =

=
1

(2π)3

∫
Φ̂(k) J0 (k⊥ρi ) e ik·R dk ,

Φ̂ Fourier trasformed Φ, ρi = kBTmc2

e2B2 .
• J0 has the form, in Fourier space, of a multiplication of Fourier
coefficients by the zeroth Bessel functions J0(k⊥ρi ).



The gyroaveraged electrostatic potential J0Φ

J0Φ =
1

2π

∫ 2π

0
Φ(R + ~ρi ) dθ =

=
1

2π

∫ 2π

0

(∫
1

(2π)3
Φ̂(k) e ik·(R+~ρi ) dk

)
dθ =

=

∫
1

(2π)3
Φ̂(k)

(
1

2π

∫ 2π

0
e ik⊥ρi cos(θ) dθ

)
e ik·R dk =

=
1

(2π)3

∫
Φ̂(k) J0 (k⊥ρi ) e ik·R dk ,

Φ̂ Fourier trasformed Φ, ρi = kBTmc2

e2B2 .
• J0 has the form, in Fourier space, of a multiplication of Fourier
coefficients by the zeroth Bessel functions J0(k⊥ρi ).



Bessel J0 smooths out small variations

• J0 acts as a smoothing operator on Φ.



Bessel J0 smooths out small variations

• J0 acts as a smoothing operator on Φ.



A discretized gyroaverage operator

• Direct calculation of J0Φ for each individual marker has to
account for its interaction with all the waves in the system,
computationally prohibitive.

• Alternatively, the gyroaverage procedure can be approximated by
an average over a number of points on the gyro-ring [Lee 1987].

J0Φ =
1

2π

∫ 2π

0
Φ(R + ~ρ) dθ ' 1

Navg

Navg∑
i=1

Φ(xi )

When four quadrature points are used, this procedure is equivalent
to replace J0 with a Taylor expansion J0 (k⊥ρi ) ' 1− 1

4 (k⊥ρi )
2

and to compute the transverse Laplacian using second order finite
differences.



Simple proof

• Consider an equispaced 2D grid, with grid spacing h = ρi in both
directions.
• Each point of the grid is defined by a pair of indexes (i , j):

J0(R) ' Φ− 1

4
ρ2i∇2

⊥Φ(R)

J0Φi ,j ' Φij +
ρ2i

4h2
(Φi+1,j + Φi−1,j − 2Φi ,j + Φi ,j+1 + Φi ,j−1 − 2Φi ,j)

=
1

4
(Φi+1,j + Φi−1,j + Φi ,j+1 + Φi ,j−1)

where the standard second order centred finite difference scheme
∇2Φj = (−Φj+1 + 2Φj − Φj − 1)/h2 was used in both directions.



Example: 4-point average in 2D, linear interpolation

J0Φ =
1

2π

∫ 2π

0
Φ(R + ρ) dθ ' 1

4

4∑
i=1

Φ(xi )

• Φ is defined on a grid
(blue dots).

• interpolation to get Φ on
some points (xi ) on the
ring (red dots).

• Average to get J0Φ at the
tracer position.



Polarization (Poisson) equation, B-splines
The polarisation equation is solved using finite elements:

Φ(x, t) =
∑
µ

Φµ(t)Λµ(x)

Where Φµ(t) are real numbers, and Λµ(x) = Λj(x1)Λk(x2)Λl(x3) is
a 3D product of polynomial basis functions (cubic B-splines).

j−2 j−1 j j+1 j+2 j+3
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j−2 j−1 j j+1 j+2 j+3 
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0

1

j−2 j−1 j j+1 j+2 j+3
−2

0
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j
 

First derivative 

Second derivative 

a) 

b) 
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Polarization (Poisson) equation, B-splines

• The polarization equation becomes:∑
sp

∑
µ

Φµ

(
−∇⊥ ·

n0mc2

b2
∇⊥Λµ(x)

)
=
∑
sp

∫
dWeJ0f

• Galerkin method:
a) Multiply the equation by another test function g(x) = Λν(x).
b) Integrate the resulting equation over configuration space.

−
∑
µ

Φµ

∫
dV
∑
sp

Λν(x)∇⊥ ·
n0mc2

B2
∇⊥Λµ(x) =

∑
sp

∫
dWdVeJ0f Λν(x) (1)

having integrated the left hand side by parts.
• This equation is usually called the discretized weak form of the
polarization equation.



Discretized polarization equation, set of linear equations

• The right hand side is now rewritten using the PIC
approximation for J0f and by integrating the delta functions:

−
∑
µ

Φµ

∑
sp

∫
dRΛν(R)∇⊥ ·

n0mc2

B2
∇⊥Λµ(R) =

∑
sp

e
N∑

k=1

wk
1

Ngr ,k

Ngr,k∑
β=1

Λν(xk,β)


• The previous equation is actually a set of linear equations:∑

µ

AµνΦµ = bν

• Aµν is a sparse, symmetric and positive definite matrix



Charge assignment, linear B-splines

∑
sp

e
N∑

k=1

1

Ngr ,k

Ngr,k∑
β=1

wkΛν(xk,β)



• Scatter operation

• each smaple point (red
dots) contributes to the
charge of 4 grid points
(blue dots).

• for 3D cubic B-Splines, 64
grid points.



Skeleton of a finite element PIC code

Initialization:
• Construct the matrix:

Aµν = −
∑
µ

Φµ

∑
sp

∫
dRΛν(R)∇⊥ ·

n0mc2

B2
∇⊥Λµ(R)

• Initialize marker positions and weights:
Rk(0) = Rk

0, µk , p‖k(0) = p0‖k , wk



Skeleton of a finite element PIC code
Main loop:
• Charge assignment:

bν =
∑
sp

e
N∑

k=1

wk
1

Ngr ,k

Ngr,k∑
β=1

Λν(xk,β)


• Solve

∑
µ AµνΦµ = bν to get:

Φ(x, t) =
∑
µ

Φµ(t)Λµ(x)

• Calculate J0Φ at each marker position.
• Update marker position using Euler-Lagrange (ODEs):

Ṙk =

(
p‖k
m

B∗

B∗‖
− c

eBB∗‖
F · [µk∇B + e∇J0Φ]

)
k

˙p‖k =

(
−B∗

B∗‖
· [µk∇B + e∇J0Φ]

)
k



Control variate PIC (δf method)

f (R, v‖, µ, t) = f0(ψ0, ε, µ, t) + δf (R, v‖, µ, t)

• Particle kinetic energy ε = mi (µB + U2/2), the magnetic
momentum µ and the toroidal canonical momentum
ψ0 = ψ + (mi/qi )Rvϕ are constant of motion on the unperturbed
trajectories (Φ = 0).
→ f0 is a stationary solution of the Vlasov equation with Φ = 0.

•The PIC approximation of f is now:

f ' f0 + δfN(R(t), p‖(t), µ)

= f0 +
N∑

k=1

wkδ(R− Rk(t))δ(p‖ − p‖k(t))δ(µ− µk)



Control variate PIC (δf method)

• The Vlasov equation becomes a time evolution equation for δf :

d

dt
f =

d

dt
δf +

d

dt
f0 = 0

d

dt
δf = − d

dt
f0 ≡ τ(J0Φ)

and consequently for the weights:

ẇk = τ(J0Φ)|k



Skeleton of a finite element PIC code
Main loop:
• Charge assignment:

bν =
∑
sp

e
N∑

k=1

wk
1

Ngr ,k

Ngr,k∑
β=1

Λν(xk,β)


• Solve

∑
µ AµνΦµ = bν to get:

Φ(x, t) =
∑
µ

Φµ(t)Λµ(x)

• Calculate J0Φ at each marker position.
• Update marker position using Euler-Lagrange (ODEs):

Ṙk = ...

˙p‖k = ...

ẇk = τ(J0Φ)|k



Simple Monte-Carlo estimate for the noise

• Statistical noise (Aydemir 1994):
Error ε introduced when the moment of the distribution
function (density) is evaluated with a finite number N of
particles, ε ' σ/

√
N

ρ2noise '
NG

N
〈w2〉G ; 〈w2〉 ≡ 1

N

N∑
i=1

w2
i

NG , number of Fourier modes included in the simulation.
G accounts for FLR filtering and grid projection filtering.

• Noise can be reduced by:
1. Increasing the number of tracers N.
2. Reducing the number of modes NG → Fourier filtering.
3. Reducing 〈w2〉 (MC, reducing σ)
4. Carefully choosing the projection algorithm, i.e. G .



The statistical appears in the charge assignment

• In certain codes, the level of noise can be measured during the
charge assignment:
Direct measure of |ρ|2noise by evaluating the average value of
|ρk |2 for the non-resonant (filtered) modes.
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MC estimate validation: noise scaling with N/NG
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Variance reduction techniques (Monte-Carlo)

• Very long simulations; Different heat sources → different fluxes.



Convergence in number of markers N

• Radial averaged heat fluxes or electrostatic potentials are very
robust... not a good choice.
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Spectra give good insights on the quality of the simulation

• Time averaged spectrum: nonzonal electrostatic potential



Density fluctuation spectrum, slow converge in N

• Time averaged spectrum: density fluctuation
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